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Abstract
The diagnosis of breast cancer in early stage is essential for successful treatment. Detection can be performed in several ways, the
most common being through mammograms. The projections acquired by this type of examination are directly affected by the
composition of the breast, which density can be similar to the suspicious masses, being a challenge the identification of malignant
lesions. In this article, we propose a computer-aided detection (CAD) system to aid in the diagnosis of masses in digitized
mammograms using a model based in the U-Net, allowing specialists to monitor the lesion over time. Unlike most of the studies,
we propose the use of an entire base of digitized mammograms using normal, benign, and malignant cases. Our research is
divided into four stages: (1) pre-processing, with the removal of irrelevant information, enhancement of the contrast of 7989
images of the Digital Database for Screening Mammography (DDSM), and obtaining regions of interest. (2) Data augmentation,
with horizontal mirroring, zooming, and resizing of images; (3) training, with tests of six-based U-Net models, with different
characteristics; (4) testing, evaluating four metrics, accuracy, sensitivity, specificity, and Dice Index. The tested models obtained
different results regarding the assessed parameters. The best model achieved a sensitivity of 92.32%, specificity of 80.47%,
accuracy of 85.95% Dice Index of 79.39%, and AUC of 86.40%. Even using a full base without case selection bias, the results
obtained demonstrate that the use of a complete database can provide knowledge to the CAD expert.
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Introduction

Breast cancer is the most deadly disease in women, account-
ing for more than half a million deaths per year [3]. It is the
second most incident type of cancer in the world [3]. Even in

the face of advances in treatment, early diagnosis is a crucial
point for defining the patient outcome.

Currently, the primary technique used in screening pro-
grams for breast cancer is the mammogram [8] .
Traditionally, two projections per breast are obtained, one
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craniocaudal (CC) and another mediolateral oblique (MLO).
Nonetheless, mass projection on a mammogram is directly
affected by its shape and location, the similarity of density
between healthy and disordered tissues, and by the technical
and instrumental quality [4]. Besides, the mammogram anal-
ysis requires the professionals’ time and a high degree of
attention to analyzing many cases [17].

These factors motivated, especially in the last decade, the
development of computational systems to aid in the interpre-
tation of medical images, known as computer-aided detection
(CAD). The use of these dual reading systems directly con-
tributes to the increased sensitivity of the disease detection [9].
The current literature proposes the use of CAD systems, with
the application of support vector machines (SVM) and micro-
genetic algorithm (uGA) for the classification of masses and
non-masses [16]. Another alternative is the use of a cascade of
Convolutional Neural Network (CNN) to perform the classi-
fication in regions of mass or not [8]. As in Al-masni et al. [2]
and Li et al. [12], CNN sets are used for segmentation and
classification, respectively, in benign or malignant.
Nevertheless, most of the time, the authors make a selection
of images in the methodologies, however not generally detail-
ing the process used.

The main contribution of this article is a new CAD system
methodology to identify and segment mass in mammograms.
The method allows the monitoring of the lesion over time, its
format, and its characteristics. We apply the contrast enhance-
ment and noise removal on the scanned mammograms. In this
process, we evaluate the use of data augmentation and the
selection of non-overlapping regions of interest (ROI) based
on the identification of masses in the projections. We
employed the U-Net model with some improvements to avoid
overfitting, given the low amount of images available.
Another contribution is the complete use of Digital Database
for Screening Mammography (DDSM), both normal, benign,
and malignant cases. Related work uses only a portion of the
publicly available databases and sometimes does not clarify
how the cases were selected. These facts directly impact on
the number of cases analyzed. Our method allows future work
to make a direct comparison with the proposed method, with-
out manual selection or pseudo-random selection bias.

The article is divided into five main sections. “Related
Work” presents the related work. “Materials and Methods”
describes the materials and methods. In “Results and
Discussion,” we present the results and discussion. Finally,
“Conclusion and Future Work” highlights the main conclu-
sions and directions for future work.

Related Work

CAD systems based on aid in the detection of mammograms
masses are designed to increase the performance of specialists

by serving as double-reading systems [8] and contributing to
the reduction of the number of false positive or false negative
results [17]. There are numerous methods of mass segmenta-
tion in mammograms. A summary of the most relevant
methods is presented in Table 4. The evaluation metrics pre-
sented are the most frequently used in the literature [14].
Despite the available data, it is considered an unresolved prob-
lem [6], mainly due to the small number of images used in the
studies, mass variability, and computational limitations.

In this way, obtaining a consistent dataset and labeled by
specialists in the medical field is one of the main challenges in
the development of a CAD. In the analysis of the literature has
identified the use of digitized mammograms databases:
DDSM,1 INBreast,2 Breast Cancer Digital Repository
(BCDR),3 Mammographic Image Analysis Society
(MIAS),4 and private image datasets. However, the amount
of images provided by the bases is still insufficient for the
generalization of the problem, due to the biological variability
and size of the masses [1]. To solve these problems, the liter-
ature proposes the use of data augmentation and transfer learn-
ing techniques, which indicate an improvement in the perfor-
mance of deep learning models [2, 18]. In this context, the
data augmentation technique is efficient mainly for the accel-
eration of convergence and to avoid overfitting of the models
[1].

One of the main advantages of using deep learning tech-
niques when compared to manual resource extraction tech-
niques is the ability to learn a set of high-level attributes and
provide high accuracy even in complex problems [1].
Correspondingly, Dhungel et al. [7] proposed a cascade of
deep learning methods with a Deep Belief Network to select
suspicious regions, a CNN to keep the correct candidates, and
a random forest (RF) to reduce false positives. In 2017,
Dhungel et al. [6] developed a complete method with detec-
tion, segmentation, and classification of the masses, using the
masses found in the previous work to segment them
employing deep structured learning followed by a conditional
random field (CRF). At the end of the processing, the authors
performed a classification of the regions in benign and malig-
nant using a CNN.

With the use of data augmentation, Li et al. [12] were able
to improve the results for the classification of mammograms
into benign and malignant. For the classification, the authors
used a CNN adapted from the DenseNet model. The authors
employed data augmentation techniques, applied rotations of
90°, 180°, and 270°, vertical and horizontal mirroring, and a
scalar reduction of 80%. In the end, the method achieved an
accuracy of 94.55%.

1 http://www.eng.usf.edu/cvprg/Mammogra- phy/Database.html
2 http://medicalresearch.inescporto.pt/breastresearch/in- dex.php/Get_
INbreast_Database
3 https://bcdr.eu/information/about
4 https://www.repository.cam.ac.uk/handle/1810/250394
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In the same way, Al-masni et al. [2] developed a simulta-
neous detection and classification CAD system based on the
You Only Look Once (YOLO) architecture. The YOLO is
used for locating potential masses and classifying them as
benign and malignant. One of the differentials presented by
the authors is the ability to detect masses in the pectoralis
muscle or in the vicinity of dense breast tissues, considered
challenging regions for detection. In the work of Al-antari
et al. [1], the YOLO architecture is used only in the detection
of masses, processing the ROI obtained in the previous step in
a Full Resolution Convolutional Network (FrCN). This net-
work consists of a decoder-encoder network, with the removal
of the max pool and subsampling layers, preserving the spatial
resolution of the input image. The modification in the struc-
ture of FrCN aims to avoid the loss of any information during
the generation of resource maps. The output of the resource
maps is fed into a softmax classifier to obtain the probability
that each pixel is a mass. Finally, the classification of the
masses into benign and malignant is performed in a simplified
version of AlexNet.

Methodologies using the extraction of manual resources
present good results in certain studies. In de Nazaré Silva
et al. [13], a contrast enhancement method with a low-pass
filter and the use of a Wavelet transform is proposed. In their
work, mammograms are segmented using the technique
known as Quality Threshold. The classification is performed
using SVM, based on resources extracted with the Haralick
descriptor and a correlogram function.

In Sampaio et al. [16], the authors suggest a method
adapted to density for the identification of the masses, divid-
ing the breasts into two groups: dense and not dense. For this
purpose, a variance filter is applied to the mammograms of the
DDSM database, extracting internal and mean-variance char-
acteristics. These are then grouped into vectors optimized by a
uGA and processed in a SVM, in charge of the classification
of breast density. In the next step, they perform the segmenta-
tion of suspicious regions using an uGA to create a texture
proximity mask. The resulting ROI have their textures ana-
lyzed by combining clustering density-based spatial clustering
of applications with noise (DBSCAN), phylogenetic trees,
local binary standards, and SVM. Finally, an uGA was used
to select the ROI that generate the best model and that maxi-
mize the classification of masses and non-masses used in the
SVM.

Another similar approach was proposed by Diniz et al. [8],
classifying the breasts in the same subgroups of Sampaio et al.
[16], but with the use of a CNN architecture. After this clas-
sification, the segmentation of asymmetric regions between
the two breasts was performed using similarity indexes.
These asymetric regions were processed in another CNN for
the classification in masses and not masses. A method of de-
tection and classification of suspicious areas is proposed by
Chakraborty et al. [5] with the use of an iterative approach of

region growth by a threshold controlled based on the mean
value of intensity and with values obtained in the analyzed
region itself. After identifying possible candidates, they per-
formed a false positive reduction and extracted characteristics
to be classified with a random forest.

Materials and Methods

This work follows the methodology presented in Fig. 1. The
employed method can be divided into four main parts: pre-
processing, data augmentation, training, and testing. In pre-
processing, we perform the removal of irrelevant information,
contrast enhancement, and performed the resizing of DDSM
images. To perform the data augmentation, we applied a hor-
izontal mirroring and zoomed in the images, extracting a set of
ROI. Finally, we performed the training and tests under six U-
Net adapted models.

For training, validation, and testing, we used a computer
with an Intel Core i7-9700K processor, with 32 GB of RAM,
and NVIDIATitan XP graphic card with 12 GB of memory.

Materials Description

We chose to use the DDSM because it is the most widely used
dataset in the literature [14]. It has approximately 2500 cases
subdivided into three significant volumes, normal, benign,
and malignant, collected at Massachusetts General Hospital,
Wake Forest University, and the University of Washington at
St. Louis Medical School [11].

Each case has two projections for each breast (CC and
MLO), as well as patient information (study date, breast den-
sity, age, number of lesions, type of path, among others) and
the image (scan date, image extension, file name, pixels per
line, bits per pixel, among others). At this point, we had the
collaboration of two specialists who followed the research and
made some notes. In the first analysis of the available images,
for example, pointed out possible difficulties for the segmen-
tation of the masses, due to the higher density of the mammary
parenchyma in young patients. Moreover, the specialists
reviewed the ground truth of each case before the use in the
methodology.

Data Pre-processing

We selected all cases of the DDSM base (normal, benign, and
malignant), except cases with calcifications, since our objec-
tive is the detection and segmentation of masses. When the
specialist detects a mass only in one of the projections, either
CC or MLO, we eliminated the projection without a mass to
avoid noise in the dataset. By using normal cases in our meth-
odology, we can simulate a real environment for breast cancer
diagnosis. And also, because of the simple use of cases with
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mass presence, the results can be overestimated. Our method-
ology for using DDSM base images is perfectly replicable
using only the information provided by the base. Also, for
the normal cases, where ground truth was not present, only
the characteristics of the case, we managed a black image for
these cases. After the selection, the images were resized to a
height of 1024 pixels, with a reduction of the width propor-
tional to the height. The reduction was necessary because the
images of the DDSM did not have a standard size. The height
of 1024 allows a reduction in the computational processing
time and does not significantly affect the results [8, 16].

To remove information irrelevant to the identification of
masses, we performed segmentation of mammograms
using the proposed algorithm of Felzenszwalb and
Huttenlocher [10] (Fig. 2b), which is based on the repre-
sentation of the image using an undirected graph G = (V,

A), with vertices vi; v j∈A
� �

to be segmented and the edges
(vi, vj ∈ A) corresponding to the pair of neighboring verti-
ces. Each edge (vi, vj) ∈ A has a non-negative weight w(vi,
vj) associated, being the measure of dissimilarities between
the two neighboring elements vi e vj. In images, the ele-
ments of Vare the pixels, and the weight w of an edge A is a
measure of dissimilarity, such as the difference in color or
texture of the image. For the segmentation, the algorithm
adopts a greedy process, joining vertices in the same con-
nected component with low weights and joining edges that
connect vertices of different connected components with
larger weights [10].

Moreover, given the tenuous differences between healthy
tissues and mammogram patients, the contrast enhancement
technique is used in the literature for reducing this problem [8,
16]; this concern was also pointed out by the specialist

Fig. 2 Mammogram of case
1329: a right breast MLO original
projection; b removing the noise
with the targeting c contrast
enhancement by application of
CLAHE

Pre-processing Training

4768 x 3120 4768 x 3120 

Noise Removal Application of 
CLAHE

Resizing

1

9

9

1

1024 x 670

Horizontal Inversion
 Zoom 0.2
Zoom 0.15

Data Augmentation

Data Augmentation
Generates ROI

Test

20% of Cases
Test of
Models

MODEL
80% of Cases

Weights

SIZE: 4768 x 3120 

Original 
Mammogram

Fig. 1 The proposed diagram for the CAD system methodology, based
on a U-Net model for mass detection and segmentation. From left to right:
original mammogram, pre-processing phase (noise removal, application

of CLAHE, and resizing), data augmentation (horizontal inversion with
zoom 0.2/0.15 and generated ROI), training (80%of cases), and test (20%
of cases)
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researchers. To deal with these differences, we applied the
contrast-limited adaptive histogram equalization (CLAHE)
(Fig. 2c), which subdivides the image into sub-areas using in-
terpolation between the edges, and to avoid increasing noise,
we use a gray-level threshold, redistributing the pixels above
this threshold in the image. The CLAHE can be defined by:

p ¼ pmax−pmin½ �*G fð Þ þ pmin ð1Þ
where p is the new gray-level value of the pixel, the values pmax
and pmin are the pixels with the highest and lowest values in the
neighborhood and G( f ) corresponds to the cumulative distri-
bution function [19].

Data Augmentation

First, we randomly divided the cases into three sets: training
(70%), validation (10%), and testing (20%) [2]. The masses, in
most cases, are proportionally smaller regions of the breast
tissue, making the training data set unbalanced, complicating
the training process. Therefore, to take advantage of the exam-
ples available in DDSM and increase the accuracy of themodel,
we use techniques of data augmentation, such as horizontal
inversion and image zoom, extracting nine regions of interest
(ROI) of 256 × 256 pixels per mammogram image. The masses
were located based on the ground truth of the DDSM base and
endorsed by a radiologist, so a window of 256 × 256 was posi-
tioned to ensure that the complete frame of the mass. In cases
where the mass has larger dimensions, as many windows have
been used as necessary to frame the mass and ensure that none
overlap another. For the cases with no mass present, we ran-
domly extracted 9 ROI from the images. Figure 3 shows the
process flow. This process also ensures that the data is balanced.

After this processing, we obtained two data sets, one without
data augmentation and another one based on the methodology
described in “Data Augmentation,” generating 48,659 ROI.
Table 1 shows the number of samples used in each of the sets.

Experimental Model Parameter Settings

In this work, we use models based on the U-Net architecture
[15] (Fig. 4), developed to provide better segmentation in med-
ical images. Its name is due to the symmetrical shape of the

model, which can be divided into two parts: downsampling and
upsampling. Downsampling extracted features with two 3 × 3
convolutions each with a ReLU, and gradually reduces the
spatial size of the image with a 2 × 2 max pooling operation,
doubling the number of feature maps at each layer. While in
upsampling, the image is reconstructed with a 2 × 2
deconvolution and the concatenation of layer maps of the same
level of downsampling and two 3 × 3 convolutions each follow-
ed by a ReLU. In the end, a 1 × 1 convolutional layer is used to
map each vector feature to the number of classes in the dataset.
Another essential element is the depth of the network, which
initially has four levels plus the base of the model. Its main
advantage is the combination of contextual information,
allowing the use of images with different dimensions and dem-
onstrates efficiency in the use of the data augmentation [15].We
tested six models derived from U-Net with the characteristics
presented in Table 2. We added the original architecture with a
padding in each convolution, avoiding the loss of information
during the feature extraction process. In addition, at each level
after the first convolution, we add a dropout of 0.3 to decrease
overfitting possibilities.

We use some assumptions for all models, being sixteen fea-
ture maps on the first layer, one-pixel padding on each layer,
batch size of eight, a learning rate of 1e−5, Adam for weight
optimization, Dice Index as loss function, and 140 epochs.

Results and Discussion

In this section, we present the generated models in the training
and validation phase, the results for the evaluation metrics for
each model, and two test cases.

Fig. 3 Flow of data augmentation and extraction of ROI for cases with mass and non-mass

Table 1 Number of samples of the dataset

Set Type Images ROI

Training Mass 2928 17,881

Non-mass 2664 16,278

Validation Mass 418 2552

Non-mass 381 2321

Test Mass 844 5087

Non-mass 754 4549
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Training and Validation of the Models

To monitor the evolution of the models, we use the 1−Dice
Index; this index, as mentioned previously, can evaluate how
much the images are similar to each other. In Fig. 5 are the
indices obtained for each of the 140 times of the models tested
for the CAD system definition.

For model A (Fig. 5), we can see that the network remained
relatively stable, not showing a significant evolution over the
140 epochs. For models B and C, both with greater complex-
ity of feature maps, they show good variation approximately
until the epoch 40, after both are overfitting. On the other
hand, model D tends to overfit, but without being able to
present any learning characteristics. While for the models E
and F, in the first one, we have a more unstable network, if we
take into account the validation sub-set, and in the second a

more constant learning characteristic, but without overfitting
characteristics, as in previous models.

Test of Models

The results obtained in the evaluation were founded on the
subsets of tests for the best time of each model of the training
phase. The choice was made automatically, based on the index-
es of loss and accuracy. Table 3 presents the performance of the
model. Figure 6 shows the ROC curves and AUC values. Here,
all quantitative measures for mass segmentation were calculat-
ed per pixel of segmented maps with the same resolution as the
original image (mammographic image input or ROI).

In Table 3, we can observe the metrics obtained by the
models. Model A shows high sensitivity. However, not always
a high sensitivity may also reflect a high specificity because of
the prevalence of FP cases. This behavior can also be seen in
the performance of the ROC curve (Fig. 6) and many times
related work focus solemnly on one index, such as sensitivity
or accuracy, which can lead to a high rate of unnecessary
biopsies or the exclusion of malign masses. Despite that, this
article considers five evaluation metrics as presented in
Table 3.

All the models tested present a high level of sensitivity,
which reinforces the correct detection of mass regions.
Despite that, the models A to D did not present enough spec-
ificity and were not useful in the classification of non-massed
cases. The best results were obtained in experiment F. This

copy and crop
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Fig. 4 Proposal of a deep learning model for the segmentation of the masses, based on U-Net architecture

Table 2 Tested configurations

Model Depth Augmentation Time per epoch

A 3 No ≃ 120 s

B 4 No ≃ 165 s

C 5 No ≃ 240 s

D 3 Yes ≃ 315 s

E 4 Yes ≃ 390 s

F 5 Yes ≃ 640 s
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model employed a 5-depth network with data augmentation
and got the best results in term of accuracy (85.95%), Dice
Index (79.39%), and AUC (86.40%). Regarding sensibility
(92.32%), although the obtained results were worse than mod-
el A, the much higher specificity (80.47%) shows that the
number of feature maps was enough to differentiate among
masses or non-masses. Another conclusion is that there is a
tendency to approximate the evaluation metrics as we increase
the depth of the network and also with the use of data aug-
mentation. The improvement of the evaluation metrics is

mainly due to the similarity between diseased tissues and
healthy, which requires a mathematical complexity and a larg-
er data sample.

Comparison with Related Work

A direct comparison with related work is difficult, considering
that they used only part of the dataset cases, selecting specific
aspects or removing certain images. However, even with the
use of a complete base, the methodology employed in this
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Fig. 5 Plots of training and
validation dice loss for each
proposed model: a depth 3, b
depth 4, c depth 5, d depth 3 and
augmentation, e depth 4 and
augmentation, and f depth 5 and
augmentation
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article was able to obtain comparable results with the related
works, as can be seen in Table 4. Sensitivity, which represents
the detection capacity of the disease, is even higher compared
to the work of [5, 8, 13, 16]. Regarding the specificity index,
we obtained better results than the work of [6].

As for the accuracy, and the AUC, we can conclude that the
use of a larger amount of data, without the bias of the choice of
data, can directly affect the results. The lower value of the
Dice Index compared to literature results may have been in-
fluenced by the use of digitized mammograms and not digital
mammograms. However, the results are close to those present-
ed in the analyzed literature and can transmit to the profes-
sional greater reliability of the CAD system by the number of
cases investigated. Therefore, the proposed methodology,
based on results and related work, indicates the possibility of
use in the health area, as a screening test. In this way, this
model can be used as a first step, eliminating the normal re-
sults and indicating a possible diagnose of abnormal exams
for the CAD expert analysis.

Differently of some related works (as in [1]), we opted for
not excluding FP cases. In our view, this exclusion can bias

the process, impacting the system’s final metric values. Using
U-Net reduced the cost and time to perform mammogram
segmentation in the test set compared to using manual re-
source extraction [13, 16]. Furthermore, with the use of higher
ROI, we were able to capture information from the whole
region of the lesion, in spite of using small areas, as in the
work of Diniz et al. [8].

Case Studies

In this section, specific cases will be shown to demonstrate the
application of the methodology in DDSM images.

True Positive Test Cases

The first example is patient A_1529_1. In this case, the meth-
odology was able to detect the mass. Figure 7 a shows the

Table 4 Comparison of the methodology with the related works. (Type are the case include in the study, Img is the sample size, Sen is the sensitivity,
Spec is the specificity, and Acc is the Accuracy)

Article Base Type Img Sen % Spec % Acc % Dice Index % AUC%

[8] DDSM/non-dense Mass 1004 91.56 90.73 91.04 – –

DDSM/dense 1482 90.36 96.35 94.84 – –

[2] DDSM Mass 600 100.0 94.00 99.70 – 96.45

[7] DDSM-BCRP and INbreast Mass 274 – – – 90.00 –

INbreast 107 97.14 92.41 95.64 – 94.78

[1] INbreast Mass 410 98.00 70.00 90.00 – 91.00

[6] INbreast Mass/non-mass 1049 92.99 – – – –

[16] DDSM/non-dense Mass 678 83.70 – – – –

[12] DDSM/dense private Mass 2042 95.60 95.36 94.55 – 91.20

[5] DDSM Mass/non-mass 1300 85.00 – 77.89 – –

[13] DDSM Mass 599 92.31 82.20 83.53 – –

Proposed method DDSM Mass/non-mass 7989 92.32 80.47 85.95 79.39 86.40
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Fig. 6 The performance of mass segmentation in terms of ROC curves in
test sets

Table 3 Evaluationmetric results in test sets, showing the best results in
italics. (Sen is the sensitivity, Spec is the specificity, Acc is the accuracy,
and AUC is the area under the ROC curve)

Model Sen % Spec % Acc % Dice Index % AUC %

A 96.69 14.09 29.73 10.90 55.39

B 75.20 52.60 56.88 19.54 63.90

C 73.41 72.90 70.26 28.43 73.16

D 84.27 66.97 74.97 39.98 75.62

E 86.15 84.38 85.20 61.16 85.26

F 92.32 80.47 85.95 79.39 86.40
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results after the pre-processing steps. Figure 7 b and c are
demarcation of the specialist and the one produced by the
model, respectively.

The second example is from patient A_1011_1 (Fig. 8).
The mass detected by the proposed methodology is smaller
than that indicated on the label provided by DDSM. However,
the location of the model lesion is consistent with that of the
specialist.

Finally, the third case of patient B_3048_1 (Fig. 9) is from
a breast with a higher density compared to the previous exam-
ples. However, the model is able to detect the location of the
lesion.

False Negative Test Case

In the case A_1617_1 (Fig. 10), the model was not able to
detect and perform mass segmentation. In this case, we can
observe that the mass has a density very similar to the rest of
the breast tissue, making it difficult to diagnose for the model.

Conclusion and Future Work

This work presented a CAD system proposal to aid in the
detection and segmentation of digitized mammograms.

Fig. 7 Case study of patient
mammography 1529, right MLO
projection. a Pre-processing. b
Ground truth. c Model result

Fig. 8 Case study of patient
mammography 1011, left MLO
projection. a Pre-processing. b
Ground truth. c Model result
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Initially, we analyzed the available public mammogram
datasets and chose the DDSM, with the largest set of cases
being 2620. Due to the characteristics of DDSM, we used some
pre-processing techniques, eliminating patient identification
platelets, noises present in the opposite region of the breast,
and applying a contrast enhancement. Finally, we perform a
data augmentation and process it in models derived from U-
Net. Different from the related work, we used the three sets of
DDSM images (normal, benign, and malignant). The full use of
the DDSM database allows a more direct comparison of the
results in future studies. Even using the complete base, our
results are similar to the obtained in the considered related
work, outperforming the results regarding the sensitivity metric.
With amore significant number of cases analyzed, the proposed
CAD system can provide greater reliability and objectivity in
the identification of cases in real environments.

As a benefit to professionals and clinics, we envision its use
as a dual reading system, serving as a second opinion during

case analysis. As a dual reading device, we aim to assist in
decreasing misdiagnosis. Using the method proposed in this
article, the professional can still monitor over time whether or
not suspicious lesions have grown. In this way, we are incor-
porating the proposed method into the clinical process, as a
screening test, with a partner hospital.

According to the images produced by the models, we
perceive that the network tends to classify sets of pixels
with a higher intensity as masses. This behavior is de-
sired, but in dense breasts, usually of young women, the
network ends up producing false positives. Therefore, a
methodology adapted to breast density may contribute to
the improvement of classification accuracy. Furthermore,
the inclusion of clinical data in the training process, such
as age, family history, smoking, weight, and use of hor-
mone replacement, is an aspect to be considered in future
models. Another future work would be the use of more
data to improve the accuracy of the model.

Fig. 10 Case study of patient
mammography 1617, left CC
projection. a Pre-processing. b
Ground truth. c Model result

Fig. 9 Case study of patient
mammography 3048, left CC
projection. a Pre-processing. b
Ground truth. c Model result
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